THE INDEPENDENCE OF CERTAIN DISTRIBUTIVE LAWS IN BOOLEAN ALGEBRAS

BY DANA SCOTT

Let α be a regular cardinal number. We shall prove the following:

THEOREM. There is a complete Boolean algebra that is (β, γ) -distributive for every $\beta < \alpha$ and every cardinal γ , but is not (α, α) -distributive $(\alpha$

The method of proof is to construct the desired algebra as the algebra of all regular open sets of a suitable topological space. To this end we note first

LEMMA 1. There is a 0-dimensional Hausdorff space X such that

- (i) the class of open sets of \mathfrak{X} is closed under the formation of β -termed intersections for every $\beta < \alpha$;
- (ii) the class of nowhere-dense sets of $\mathfrak X$ is closed under the formation of β -termed unions for every $\beta < \alpha$;
- (iii) there is an $\alpha \times 2$ -termed sequence C of nonempty open-closed sets of $\mathfrak X$ such that
 - (iii₁) $C_{\xi 0} \cup C_{\xi 1} = \mathfrak{X}$ for $\xi < \alpha$; and
 - (iii₂) $\bigcap_{\xi < \alpha} C_{\xi f(\xi)}$ is nowhere-dense for $f \in 2^{\alpha}$.

Proof. Let the set of points of the space $\mathfrak X$ be the set of all subsets of α . (Notice that α is considered as an ordinal number, and that each ordinal is the set of all smaller ordinals. Thus, for example, every ordinal $\beta < \alpha$ is also a point of $\mathfrak X$.) If x and y are two subsets of α , denote by [x, y] the interval of all sets z such that $x \subseteq z \subseteq y$. As a basis for the open sets of $\mathfrak X$ take the collection of all intervals [x, y] such that $x \cup (\alpha - y) \subseteq \beta$ for some $\beta < \alpha$. An empty interval is also included in the basis. Suppose that $\beta < \alpha$ and $\{[x_{\xi}, y_{\xi}] : \xi < \beta\}$ is a sequence of basic open sets where $x_{\xi} \cup (\alpha - y_{\xi}) \subseteq \gamma_{\xi} < \alpha$ for $\xi < \beta$. We have

$$\bigcap_{\xi < \beta} \left[x_{\xi}, \ y_{\xi} \right] = \left[\bigcup_{\xi < \beta} x_{\xi}, \bigcap_{\xi < \beta} y_{\xi} \right]$$

and

$$\bigcup_{\xi < \beta} x_{\xi} \cup \left(\alpha - \bigcap_{\xi < \beta} y_{\xi} \right) \subseteq \bigcup_{\xi < \beta} \gamma_{\xi}.$$

From the regularity of α it follows that $U_{\xi < \beta} \gamma_{\xi} < \alpha$; thus the intersection of the sequence of basic open sets is again a basic open set. (Notice that if the

Received by the editors April 4, 1956.

⁽¹⁾ For terminology see Smith-Tarski [3]. This theorem has also been proved in a weaker form in Smith [2].

sequence is a decreasing sequence of nonempty sets, then the intersection is nonempty.) An *open* set then is a union of basic open sets. It is obvious that there are no isolated points in the space $\mathfrak X$ and that $\mathfrak X$ is Hausdorff. Also clear is the proof that every basic open set is closed, showing that $\mathfrak X$ is 0-dimensional. An easy computation using the set-theoretical distributive law and the fact just established about the intersections of basic open sets yields finally a proof of (i).

Let \emptyset be the collection of all nonempty basic open sets. Let $\beta < \alpha$ and N be a β -termed sequence of nowhere-dense sets. To show that $N^* = \bigcup_{\xi < \beta} N_{\xi}$ is nowhere dense, it suffices to show that for every $Y \in \emptyset$ there is a $Z \in \emptyset$ such that $Z \subseteq Y$ and $Z \cap N^* = O$. By the axiom of choice let \mathfrak{C} be a function that chooses a set from every nonempty family of subsets of our space. Let $Y \in \emptyset$ and define by recursion a β -termed sequence G such that for $\xi < \beta$

$$G_{\xi} = \mathfrak{C}\left\{Z \colon Z \in \mathfrak{O} \text{ and } Z \subseteq Y \cap \bigcap_{\eta < \xi} G_{\eta} \text{ and } Z \cap N_{\xi} = O\right\}.$$

We proceed by induction to show that this sequence is well-defined. Thus suppose that G_{η} is well-defined for all $\eta < \xi$ where $\xi < \beta$. It is clear that the sequence is decreasing up to this point and hence $Y \cap \bigcap_{\eta < \xi} G_{\eta} \in \mathfrak{O}$. The fact that N_{ξ} is nowhere-dense implies that there is a $Z \in \mathfrak{O}$ such that $Z \subseteq Y \cap \bigcap_{\eta < \xi} G_{\eta}$ and $Z \cap N_{\xi} = O$. It follows at once that G_{ξ} is well-defined. It is obvious now that the whole sequence G is decreasing, and hence $G^* = \bigcap_{\xi < \beta} G_{\xi} \in \mathfrak{O}$ and $G^* \subseteq Y$ and $G^* \cap N^* = O$. This argument shows that N^* is nowhere-dense and establishes property (ii).

To prove (iii) we have only to let

$$C_{\xi 0} = [\{\xi\}, \alpha]$$

and

$$C_{\xi 1} = [0, \alpha - \{\xi\}]$$
 for $\xi < \alpha$.

Since these sets are basic open sets they are also closed. Formula (iii₁) is obvious and (iii₂) is a consequence of the simple fact that

$$\bigcap_{\xi < \alpha} C_{\xi f(\xi)} = \left\{ f^{-1}(0) \right\} \qquad \text{for } f \in 2^{\alpha}.$$

This completes the proof of Lemma 1.

If $\alpha = \omega$ our space is nothing more than the Cantor Discontinuum. For larger α the space is compact only in the sense that every open cover can be reduced to one of power less than α . The proof of (ii) above could easily be modified to show that no nonempty open set is an α -termed union of nowhere-dense sets—the analogue of the Baire Category Theorem. A rather different construction of the space has been given by Sikorski in [1] (see especially p. 129 where the space is called \mathfrak{D}_{μ} where $\alpha = \omega_{\mu}$.) Our construction here

would seem neater since there is no need of any non-Archimedean metric; however, the particular form of the space \mathfrak{X} is of no importance for the present purpose.

Let \Re be the algebra of all regular open sets of the space \Re . That \Re is a complete Boolean algebra is well-known(2). The Boolean operations of M will be denoted by the usual symbols $+, \cdot, \sum, \prod$. The unit element of \Re is \mathfrak{X} itself, while the zero element is just the empty set O. The next lemma, which we state without proof, relates the Boolean operations in \mathbb{R} to the settheoretical operations in \mathfrak{X} . We use the symbols in X and cl X to denote the interior and closure of the set X.

LEMMA 2. If β is any ordinal and X is a β -termed sequence of regular open sets (i.e. elements of \Re), then

- (i) $\sum_{\xi < \beta} X_{\xi} = \text{in cl } \bigcup_{\xi < \beta} X_{\xi};$
- (ii) $\prod_{\xi < \beta} X_{\xi} = \text{in cl } \bigcap_{\xi < \beta} X_{\xi};$ (iii) $\sum_{\xi < \beta} X_{\xi} \bigcup_{\xi < \beta} X_{\xi} \text{ is nowhere-dense};$ (iv) $\bigcap_{\xi < \beta} X_{\xi} \prod_{\xi < \beta} X_{\xi} \text{ is nowhere-dense}.$

LEMMA 3. \Re is (β, γ) -distributive for every $\beta < \alpha$ and every γ .

Proof. Let $\beta < \alpha$ and let γ be any ordinal. Given a $\beta \times \gamma$ -termed sequence X of regular open sets and an open set A satisfying the formula

(1)
$$\sum_{\eta < \gamma} X_{\xi \eta} = A \neq 0 \qquad \text{for each } \xi < \beta,$$

then we must show that there is a function $f \in \gamma^{\beta}$ such that (3)

$$(2) \qquad \prod_{\xi < \emptyset} X_{\xi f(\xi)} \neq 0.$$

Thus, by way of contradiction, assume that for all functions $f \in \gamma^{\beta}$

$$\prod_{\xi < \beta} X_{\xi f(\xi)} = O.$$

By virtue of Lemma 2 (iv), formula (3) implies

(4)
$$\bigcap_{\xi < \beta} X_{\xi f(\xi)} \text{ is nowhere-dense.}$$

Since $\beta < \alpha$ and each set $X_{\xi_{\eta}}$ is open, we have by Lemma 1 (i)

(5)
$$\bigcap_{\xi < \beta} X_{\xi f(\xi)} \text{ is open.}$$

Formulas (4) and (5) yield at once

⁽²⁾ See for example Tarski [4]. A subset of a topological space is called a regular open set if it is equal to the interior of its closure.

⁽³⁾ For the equivalence of this form of the distributive law to other forms see Smith-Tarski [3, Theorem 2.2].

(6)
$$\bigcap_{\xi < \theta} X_{\xi f(\xi)} = O \qquad \text{for every } f \in \gamma^{\theta}.$$

Hence we can derive from (6) the formula

$$\bigcup_{f \in \gamma^{\beta}} \bigcap_{\xi \in \beta} X_{\xi f(\xi)} = O.$$

In view of the general set-theoretical distributive law, (7) implies

(8)
$$\bigcap_{\xi < \beta} \bigcup_{\eta < \gamma} X_{\xi \eta} = O.$$

From formula (8) we derive

$$(9) A = A - \bigcap_{\xi < \beta} \bigcup_{\eta < \gamma} X_{\xi \eta} = \bigcup_{\xi < \beta} \left(A - \bigcup_{\eta < \gamma} X_{\xi \eta} \right).$$

Now by Lemma 2 (iii) and formula (1) we have for each $\xi < \beta$

(10)
$$A - \bigcup_{\eta < \gamma} X_{\xi_{\eta}}$$
 is nowhere-dense.

By virtue of Lemma 1 (ii), formulas (9) and (10) imply that the set A is nowhere-dense, which contradicts the assumption that A is a nonempty open set. The proof of Lemma 3 is thus complete.

LEMMA 4. \Re is not (α, α) -distributive.

Proof. Clearly the terms of the sequence C of Lemma 1 (iii) are regular open sets. In terms of the Boolean operations of \Re conditions (iii₁) and (iii₂) may be written as

(iii')
$$C_{\xi 0} + C_{\xi 1} = \mathfrak{X} \qquad \text{for } \xi < \alpha;$$

(iii'₂)
$$\prod_{\xi < \alpha} C_{\xi f(\xi)} = O \qquad \text{for } f \in 2^{\alpha}.$$

Whence we see that the sequence C itself offers a counterexample to the $(\alpha, 2)$ -distributive law.

Our theorem is now a direct consequence of Lemmas 3 and 4.

BIBLIOGRAPHY

- 1. R. Sikorski, Remarks on some topological spaces of high power, Fund. Math. vol. 37 (1950) pp. 123-136.
- 2. E. C. Smith, A distributivity condition for Boolean algebras, Ann. of Math. vol. 64 (1956) pp. 551-561.
- 3. E. C. Smith and A. Tarski, Higher degrees of distributivity and completeness in Boolean algebras, Trans. Amer. Math. Soc. vol. 84 (1957) pp. 230-257.
- 4. A. Tarski, Les fondements de la géométrie des corps, Ksiega pamiatkowa Pierwsego Polskiego Zjazdu Mathematycznego Lwów vol. 9 (1927) pp. 29-33.

Princeton University, Princeton, N. J.